macOS: Apple ARM versions of WEKA 3.8.5/3.9.5 available now

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

macOS: Apple ARM versions of WEKA 3.8.5/3.9.5 available now

Eibe Frank-2
Administrator
If you are lucky enough to have one of the new Apple computers with ARM processors, you might want to try our new WEKA downloads for this platform, which are available at the usual place:


(Of course, you can also run the Intel version of WEKA on ARM Macs by using Rosetta 2, but that should be less efficient than code built specifically for this platform.)

Note that you may have to give the WEKA application permission to access relevant folders on your Mac so that you can actually read data into WEKA. This seems to be a feature of recent versions of macOS.

For fast native matrix algebra, we have also made a corresponding

  netlibNativeOSXarm

package for WEKA. Installing this package using the WEKA package manager will give a speed boost to those algorithms that use netlib-java under the hood. A list of some relevant algorithms is appended below.

WEKA packages that DO NOT currently work with this distribution of WEKA: RPlugin (no official distribution of R for Apple ARM yet), wekaDeeplearning4j (same), and Auto-WEKA (the latter does not work with recent WEKA distributions anyway).

In contrast, it is possible to use wekaPython (for running scikit-learn schemes in WEKA) by installing the scikit-learn package and other packages using miniforge3 and specifying the path to the corresponding Python executable and directory in WEKA (or via environment variables). The distributedWekaSpark3Dev and massiveOnlineAnalysis packages for WEKA also seem to work fine.

Initial experience indicates that Apple ARM is a very good platform for running WEKA. Execution times for algorithms are very good, and the user interface feels very snappy.

Cheers,
Eibe

Here is the list of core WEKA schemes that directly or indirectly make use of netlib-java:

GaussianProcesses 
PrincipalComponents
LinearRegression 
M5P 
M5Rules
MultivariateGaussianEstimator

There are also some schemes in various packages: 

LDA 
QDA 
FLDA 
MultiClassFLDA
LatentSemanticAnalysis 
Nystroem 
RotationForest 
LeastMedSq 
RBFNetwork 
XNV






_______________________________________________
Wekalist mailing list -- [hidden email]
Send posts to [hidden email]
To unsubscribe send an email to [hidden email]
To subscribe, unsubscribe, etc., visit https://list.waikato.ac.nz/postorius/lists/wekalist.list.waikato.ac.nz
List etiquette: http://www.cs.waikato.ac.nz/~ml/weka/mailinglist_etiquette.html