Hello,
I am working with adaboost.M2 to improve the performance of a weak classifier. My goal is to display the rejection rate at each iteration. However, my code doesn't take into account the previous weak classifiers when classifying instances. I am using the following code:
public double [] distributionForInstance(Instance instance)
throws Exception {
// default model?
if (m_CNC!= null) {
return m_CNC.distributionForInstance(instance);
}
if (m_NumIterationsPerformed == 0) {
throw new Exception("No model built");
}
double [] sums = new double [instance.numClasses()];
for (int i = 0; i < m_NumIterationsPerformed; i++) {
double classification = m_Classifiers[i].classifyInstance(instance);
if (Utils.isMissingValue(classification)) {
return sums;
}
else {
sums[(int)m_Classifiers[i].classifyInstance(instance)] += m_Betas[i];
}
}
return Utils.logs2probs(sums);
}
What should be done to resolve this issue ?
Sincerely,
Hayfa Azibi
_______________________________________________
Wekalist mailing list --
[hidden email]
Send posts to
[hidden email]
To unsubscribe send an email to
[hidden email]
To subscribe, unsubscribe, etc., visit
https://list.waikato.ac.nz/postorius/lists/wekalist.list.waikato.ac.nzList etiquette:
http://www.cs.waikato.ac.nz/~ml/weka/mailinglist_etiquette.html